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Abstract

Purpose: The aim of this study was to assess racial/ethnic and socioeconomic disparities in the difference between atherosclerotic
vascular disease prevalence measured by a multitask convolutional neural network (CNN) deep learning model using frontal chest
radiographs (CXRs) and the prevalence reflected by administrative hierarchical condition category codes in two cohorts of patients with
coronavirus disease 2019 (COVID-19).
Methods: A CNN model, previously published, was trained to predict atherosclerotic disease from ambulatory frontal CXRs. The
model was then validated on two cohorts of patients with COVID-19: 814 ambulatory patients from a suburban location (presenting
from March 14, 2020, to October 24, 2020, the internal ambulatory cohort) and 485 hospitalized patients from an inner-city location
(hospitalized from March 14, 2020, to August 12, 2020, the external hospitalized cohort). The CNN model predictions were validated
against electronic health record administrative codes in both cohorts and assessed using the area under the receiver operating charac-
teristic curve (AUC). The CXRs from the ambulatory cohort were also reviewed by two board-certified radiologists and compared with
the CNN-predicted values for the same cohort to produce a receiver operating characteristic curve and the AUC. The atherosclerosis
diagnosis discrepancy, Dvasc, referring to the difference between the predicted value and presence or absence of the vascular disease HCC
categorical code, was calculated. Linear regression was performed to determine the association of Dvasc with the covariates of age, sex,
race/ethnicity, language preference, and social deprivation index. Logistic regression was used to look for an association between the
presence of any hierarchical condition category codes with Dvasc and other covariates.
Results: The CNN prediction for vascular disease from frontal CXRs in the ambulatory cohort had an AUC of 0.85 (95% confidence
interval, 0.82-0.89) and in the hospitalized cohort had an AUC of 0.69 (95% confidence interval, 0.64-0.75) against the electronic
health record data. In the ambulatory cohort, the consensus radiologists’ reading had an AUC of 0.89 (95% confidence interval, 0.86-
0.92) relative to the CNN. Multivariate linear regression of Dvasc in the ambulatory cohort demonstrated significant negative associations
with non-English-language preference (b ¼ �0.083, P < .05) and Black or Hispanic race/ethnicity (b ¼ �0.048, P < .05) and positive
associations with age (b ¼ 0.005, P < .001) and sex (b ¼ 0.044, P < .05). For the hospitalized cohort, age was also significant (b ¼
0.003, P < .01), as was social deprivation index (b ¼ 0.002, P < .05). The Dvasc variable (odds ratio [OR], 0.34), Black or Hispanic
race/ethnicity (OR, 1.58), non-English-language preference (OR, 1.74), and site (OR, 0.22) were independent predictors of having one
or more hierarchical condition category codes (P < .01 for all) in the combined patient cohort.
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Conclusions: A CNN model was predictive of aortic atherosclerosis in two cohorts (one ambulatory and one hospitalized) with COVID-
19. The discrepancy between the CNN model and the administrative code, Dvasc, was associated with language preference in the
ambulatory cohort; in the hospitalized cohort, this discrepancy was associated with social deprivation index. The absence of administrative
code(s) was associated with Dvasc in the combined cohorts, suggesting that Dvasc is an independent predictor of health disparities. This may
suggest that biomarkers extracted from routine imaging studies and compared with electronic health record data could play a role in
enhancing value-based health care for traditionally underserved or disadvantaged patients for whom barriers to care exist.
Key Words: Deep learning, vascular disease, value-based health care, health disparities, hierarchical condition categories
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INTRODUCTION
Comorbidities are strongly associated with increased severity
of coronavirus disease 2019 (COVID-19), disproportion-
ately affecting racial and ethnic minorities [1]. Many factors
contribute to these disparities, including socioeconomics,
geography, environment, and health care accessibility, all
potentially resulting in underdiagnosis and undertreatment
of disease [2]. Racial/ethnic minority populations tend to
have a greater degree of underlying comorbidities, which
can increase the risk for mortality from COVID-19 [2-4].
Non-White patients hospitalized with COVID-19 were
more likely to have a higher severity of infection on
admission chest radiographs (CXRs), associated with limited
English proficiency [5]. Detecting and measuring health
disparities remains difficult and complex [6] and requires
new technologies and techniques in a multidisciplinary
approach.

In tandem with an increasing recognition of structural
health disparities within the US health care delivery system,
transformative progress toward value-based health care
(VBH) is occurring. VBH is a data-dependent operational
construct that emphasizes improved outcomes and decreased
costs by managing chronic comorbidities, with re-
imbursements proportional to disease burden [7]. CMS
maintains specific ICD10 codes, hierarchical condition
categories (HCCs), that have predictive power for future
hospital costs [8]. HCCs contain groupings of multiple
ICD10 codes, generated through encounters with health
care providers and recorded in administrative data. These
data elements are often more reproducible and amenable to
analysis than manual review of electronic health records
(EHRs). These administrative data also predict mortality in
patients with COVID-19 [9]. Using a convolutional neural
network (CNN) to connect HCCs to CXRs can convert the
images into useful biomarkers of patients’ chronic disease
burden [10].

Deep learning (DL) has been extensively documented to
propagate health care disparities and biases, mostly through
the use of biased training data, limiting its generalizability
[11]. Conversely, it is possible to use DL algorithms to detect
such disparities. We chose thoracic atherosclerosis, most
commonly identified by calcification of the aortic knob, as
ournal of the American College of Radiology
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our primary feature. Although the visual detection of
thoracic atherosclerosis is trivial, the systemic nature of
atherosclerosis and its association with multiple disease
processes (cardiac, renal, peripheral arterial, cerebrovascular
disease, and diabetes) make it relevant as a potential
biomarker. Using a CNN-based DL classifier [10] on CXRs
of patients with COVID-19, we can predict the presence of
vascular disease. This prediction can then be compared with
administrative data to determine the discrepancy between the
classifier’s prediction and the presence or absence of the
administrative code for vascular disease.

We hypothesize that this discrepancy is associated with
factors that change the interaction of patients with the
health care system, which may alter administrative practices
and ultimately coding. Regression can be used to find any
association of demographic, racial, and socioeconomic fac-
tors with the discrepancy between the prediction and
administrative data.
METHODS

Study Population
This retrospective study was approved by the institutional
review board and was granted waivers of the requirement to
obtain informed consent at the institutions at which the two
cohorts were based.

There were two cohorts in this study. The first valida-
tion cohort (internal ambulatory COVID-19þ, n ¼ 814)
was seen between March 14, 2020, and October 24, 2020,
and had positive real-time reverse transcription polymerase
chain reaction COVID-19 test results in the ambulatory or
immediate care setting at Duly Health and Care, a large
multispecialty group in the suburbs of Chicago. To evaluate
nonacute findings related to chronic medical conditions, the
search for frontal CXRs was expanded from April 26, 2018,
to October 23, 2020, in this ambulatory COVID-19þ
cohort, because the development of thoracic atheroscle-
rotic vascular disease is a lengthy process.

The second cohort (external hospitalized COVID-19þ,
n ¼ 485) was seen at a large urban tertiary academic hospital
in Chicago, the University of Illinois Hospital, between
March 14, 2020, and August 12, 2020, and underwent
185
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frontal chest radiography in the emergency department and
had positive real-time reverse transcription polymerase chain
reaction COVID-19 test results.

Image Acquisition and Analysis
CXRs for the ambulatory COVID-19þ cohort were obtained
conventionally using digital posteroanterior radiography (no
portable radiographs). CXRs for the hospitalized COVID-
19þ cohort were all portable. All CXRs were extracted from
a PACS using a scripted method (SikuliX version 2.0.2) and
saved as deidentified 8-bit grayscale portable network graphics
files (ambulatory cohort) or 24-bit Joint Photographic Experts
Group files (hospitalized cohort).

DL CXR Classifier
ACNN-based DL classifier was used to produce an estimate of
the likelihood of vascular disease (administrative code HCC-
108). This tool has been described previously [10] and was
developed on patients such as those in the ambulatory
cohort, over a retrospective period of 10 years. All of the
CXRs were analyzed by this tool using a high-resolution
portable network graphics or Joint Photographic Experts
Group file. The result is an estimate of the likelihood of the
presence of a code in HCC-108 category (atherosclerotic
vascular disease) ranging from 0 to 1. Occlusion-based attri-
bution maps, in which areas of the image are occluded to
quantify how the model’s prediction changes for the class [12],
were generated as a sanity check (Captum version 0.3.1).

Clinical Data
Clinical variables included sex, age, self-reported race/
ethnicity, language preference, body mass index, and history
of vascular disease as determined by HCC codes from the
EHR and administrative data. For patients who did not self-
report, race/ethnicity data were imputed using geolocation
and surname from US census data [13]. Self-reported races
were categorized as Black or Hispanic and all others for the
purposes of modeling.

Social Deprivation Index
To control for geographic health inequities, we imputed the
publicly available social deprivation index (SDI) by refer-
encing the associated ZIP code tabulation areas [14]. The
SDI is based on the American Community Survey and is
used “to quantify levels of disadvantage across small areas,
evaluate their associations with health outcomes, and
address health inequities” [15]. The SDI is a metric that
combines demographic data of poverty, high school
dropouts, renting, overcrowding, lack of car ownership, and
unemployment into a granular ZIP code–level ranking. The
SDI, together with other measures, can be used to identify
areas that may need additional health care resources.
186
Consensus Interpretation
Expert interpretations of CXRs were provided by two board-
certified radiologists (A.P. and N.S.) with 11 and 10 years of
posttraining experience, respectively, for the presence or
absence of thoracic aortic atherosclerosis in the ambulatory
cohort. Both radiologists were blinded to the results of the DL
classifier or any clinical characteristics. Cohen’s k coefficient
was calculated to measure interrater reliability of the two ra-
diologists, and cases of disagreement were reconciled by
consensus. The CXRs from the hospitalized cohort were not
interpreted by the radiologists because of HIPAA limitations.

Statistical Analysis
Demographic characteristics, clinical findings, and CXR DL
outcomes were compared between the internal ambulatory
and external hospitalized cohorts using two-sided c2 tests
and t tests. Models for each cohort were generated to eval-
uate the classifier’s predictions of vascular disease against the
ground truth (administrative data), using a receiver oper-
ating characteristic curve in which the area under the curve
was calculated. The classifier’s predictions of vascular disease
for the ambulatory cohort were further evaluated against the
radiologists’ reading. Confidence intervals (CIs) and com-
parison of receiver operating characteristic curves were
produced using the method of DeLong et al [16].

The numeric difference between the presence or absence
of the administrative code for vascular disease (HCC-108)
and the classifier’s predictions of vascular disease was defined
as Dvasc and ranged between �1 and þ1. Multivariate linear
regression was performed to examine the association of age,
sex, race/ethnicity, language preference, and SDI. Linear
model b coefficients, R2 values, and P values were generated.
We further evaluated the associations of Dvasc, age, sex, race/
ethnicity, language preference, and SDI with the likelihood
of having none versus one or more HCC codes using logistic
regression and generated odds ratios (ORs) and CIs for these
associations. P < .05 were considered to indicate statistical
significance, and analysis was conducted in R version 4.0.2
(R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Patient Characteristics
A total of 1,299 patients were included in this study, 814
from the internal ambulatory COVID-19þ cohort and 485
from the external hospitalized COVID-19þ cohort (Fig. 1,
Table 1). Participants in the hospitalized cohort compared
with the ambulatory cohort were more likely to be older
(51 versus 63 years of age, P < .001), Black (8% versus
48%, P < .001), or Hispanic (8% versus 48%, P < .001)
and to have a non-English-language preference (8% versus
25%, P < .001) and a higher mean SDI (31 versus 88, P <

.001) (Fig. 2). Race was imputed for 42 patients (5%) in the
Journal of the American College of Radiology
Volume 19 n Number 1PB n January 2022



Fig. 1. Flowchart of patient inclusion per cohort. Patients with no or negative real-time reverse transcription polymerase chain
reaction (RT-PCR) test results, patients who did not undergo chest radiography, and patients with no social deprivation index
(SDI) information were excluded. A total of 1,299 patients were eligible for this study. COVID-19 ¼ coronavirus disease 2019.
ambulatory cohort and 6 patients (1.2%) in the hospitalized
cohort. The hospitalized cohort had a higher prevalence of
vascular disease compared with the ambulatory cohort
(21% versus 8%). The DL classifier predicted both older
age and a higher index of vascular disease in the
hospitalized cohort compared with the ambulatory cohort,
findings that were both consistent with the EHR data. A
model evaluating the classifier’s predictions for vascular
disease compared with the EHR-based administrative data
(HCC-108) showed areas under the curve of 0.851 (95%
CI, 0.816-0.887) in the ambulatory cohort and 0.694 (95%
CI, 0.641-0.748) in the hospitalized cohort, with P < .001,
using DeLong’s method [16]. The relationship between the
classifier’s predictions for vascular disease and the
radiologists’ consensus interpretation had an area under
the receiver operating characteristic curve of 0.89 (95%
CI, 0.86-0.92), with the radiologists having a Cohen’s k
of 0.92, demonstrating strong agreement.

Figure 3 shows representative frontal CXRs from the
ambulatory (Fig. 3A) and hospitalized (Fig. 3B) cohorts,
demonstrating how the DL model analyzed the radiographs
and generated the likelihoods of vascular disease.

Modeling of Dvasc

As shown in Table 2, linear regression modeling of Dvasc in
the ambulatory cohort demonstrated significant associations
with age, sex, Black or Hispanic race/ethnicity, and non-
Journal of the American College of Radiology
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English-language preference but no significant association
with SDI. In the hospitalized cohort, the significant asso-
ciations were with SDI and age.

The likelihood of having none versus one or more HCC
codes was associated with Dvasc (OR, 0.336; 95% CI,
0.209–0.538; P < .001), age (OR, 1.059; 95% CI, 1.049-
1.069; P < .001), Black or Hispanic race/ethnicity (OR,
1.576; 95% CI, 1.124-2.210; P < .01), and non-English-
language preference (OR, 1.738; 95% CI, 1.170-2.583; P
< .01) (Table 3).
DISCUSSION
In this study we adapted a previously published CNN DL
model to identify the presence of thoracic atherosclerotic
disease from frontal CXRs and then combined these results
with EHR administrative data from two cohorts with linear
models. We found the CNN DL classifier to be predictive of
vascular disease, validated in two disparate COVID-19 co-
horts. The prediction of vascular disease was associated with
multiple demographic findings of age, sex, self-reported
race/ethnicity, language preference, and ZIP code–based
SDI, which is a proxy for poverty and social disparities
strongly associated with reduced health and health care ac-
cess. It is often difficult to understand exactly what an
image-based CNN is using to make a prediction. Occlusion
mapping can be used to visualize the portion of the image
187
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Table 1. Demographics, clinical findings, and convolutional neural network CXR characteristics per cohort

Characteristic

Ambulatory Hospitalized

P(n ¼ 814) (n ¼ 485)

Age (y) 50.8 � 16.2 56.3 � 16.4 <.001

Sex .554
Male 389 (47.8) 240 (49.5)
Female 425 (52.2) 245 (50.5)

Race/ethnicity <.001
White 562 (69) 27 (5.6)
Black 65 (8) 234 (48.2)
Hispanic 124 (15.2) 220 (45.4)
Asian 63 (7.7) 4 (0.8)

Language preference <.001
English 745 (91.5) 360 (74.2)
Non-English 69 (8.5) 125 (25.8)

SDI 31.1 � 25.7 88.5 � 17.8 <.001
BMI (kg/m2) 30.8 � 7.08* 32.2 � 10.1 .089

Vascular disease diagnosis (EHR HCC-108) 72 (8.8) 105 (21.6) <.001

Patients without any HCC codes 455 (56) 88 (18)

DL model predictions using frontal CXR
Predicted age (y) 54.2 � 13.6 60.7 � 10.4 <.001
Vascular disease (HCC-108) probability
output†

0.254 � 0.231 0.413 � 0.212 <.001

Note: Data are expressed as mean � SD or as number (percentage). BMI ¼ body mass index; CXR ¼ chest radiograph; DL ¼ deep learning;
EHR ¼ electronic health record; HCC ¼ hierarchical condition category; SDI ¼ social deprivation index.

*Fourteen participants did not have recorded BMI in the ambulatory cohort.
†Normalized probability from 0 to 1 of vascular disease output by the DL classifier.
that is most important for the likelihood of the diagnosis.
The occlusion mapping in our cohort demonstrates positive
attribution to the cardiovascular structures for vascular dis-
ease (Fig. 3).

Our data demonstrated a discrepancy between the CXR
classifier and the EHR-based administrative code for
Fig. 2. Histogram distribution of the social deprivation index (SD
ambulatory cohort) showing a bimodal distribution and wide se

188
vascular disease. There were significant associations with
race/ethnicity, SDI, and language preference, which varied
in our two socioeconomically and ethnically diverse cohorts.
This discrepancy was associated with higher SDI values in a
cohort with a higher mean SDI but not in a more affluent,
lower risk cohort with a much lower mean SDI. This may
I) across two sites (site 1, hospitalized cohort; site 2,
paration of the two cohorts.

Journal of the American College of Radiology
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Fig. 3. Occlusion maps with the input chest radiograph on the left and output positive attribution map on the right. The
darker green areas, when occluded from the image, positively affect the model’s prediction more significantly, representing a
larger number on the scale. Occlusion maps for the prediction of vascular disease in a 63-year-old White male patient (A)
without an associated electronic health record diagnosis code from the ambulatory cohort and an 86-year-old Black male
patient (B) also without a diagnosis of vascular disease from the hospitalized cohort. Positive attributions primarily relate to the
aorta, with calcified atherosclerotic visible at the aortic knob.
mean that social deprivation must reach a certain level
threshold before it affects coding discrepancy.

We found that the likelihood of having any adminis-
trative (HCC) code was associated with vascular diagnosis
discrepancy Dvasc, age, Black or Hispanic race/ethnicity, and
non-English-language preference (Table 3). Although there
are many unmeasured variables, this suggests that it is
possible that the discrepancies in administrative codes are
associated with socioeconomic and ethnic factors.

As we transition to a more value-based model for health
care delivery and reimbursement, it will be increasingly
important to extract the maximum possible administrative
codes from available data, because cost-effective care and
institutional profitability are tightly linked in VBH [17].
Extracting data from a radiograph and feeding through a
trained model to identify “at risk” patients who might
benefit from extra clinical, ancillary, and administrative
attention may help meet VBH management metrics and
improve overall patient care and institutional
Journal of the American College of Radiology
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reimbursement. We offer this work as a proof of concept,
with specific model improvements left as future work for
interested investigators.

Traditionally, comorbidities have been obtained
through patient history and medical records, but there are
known racial disparities in provider-patient informing of
incidental medical findings [14]. In addition, there are
known linguistic barriers, such as speaking only a non-
English language, that have been magnified during the
COVID-19 pandemic [18]. Although aortic atherosclerosis
is exceedingly common with advanced age [19], the
discrepancy in its reporting may indicate more important
health disparities. DL algorithms are deterministic,
meaning that they will produce the same result for the
same image, whereas radiologists have stochastic elements
in their results, which is why we used Cohen’s k to
evaluate interobserver variability in the radiologists’
interpretations. Cohen’s k between the two radiologists
was very strong at 0.92 but was not perfect.
189
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Table 2. Modeling the difference between the convolutional neural network–predicted and administrative prevalence of
vascular disease (Dvasc)

Characteristic

Ambulatory Hospitalized

Coefficient P Coefficient P

Age 0.005 <.001 0.003 <.01

Sex 0.044 <.05 NA NS

Black or Hispanic race/ethnicity �0.048 <.05 NA NS

Non-English language preference �0.083 <.05 NA NS

SDI NA NS 0.002 <.05

Adjusted R2 .11 .022

P <.001 0.0201

Note: NA¼ not applicable; SDI ¼ social deprivation index.
If underserved patients most at risk for poor health out-
comes are similarly most at risk for failure in provider-patient
informing and missing information because of language limi-
tations, can a radiologic study fill the gap? We believe so.
Automated notification of treating physicians by EHR, text
message, or email could be implemented to alert them that a
patient, on the basis of the imaging findings, might have un-
documented pathologies that warrant further investigation.

It is interesting that the larger the discrepancy factor
Dvasc, the more likely there were no codes present (Table 3).
This might be completely normal and expected for young
adults in their 20s, but our cohorts had mean ages in the
50s. We live in a global, hypermobile world where people
of many different ethnicities, national origins, and economic
means may present for care. For example, a 55-year-old
non-English-speaking refugee might present de novo for the
first time in a US medical care setting with numerous barriers
in access to care. Dvasc, and its association with a lack of HCC
coding documentation, may indicate a potential “tip of the
iceberg” situation, with more extensive undocumented and
likely undertreated pathology lurking under an initial presen-
tation, such as COVID-19 in this setting.
Table 3. Associations between none and one or more hierarch
ambulatory and hospitalized patients, using binomial logistic re

Characteristic Odds

Age 1.0

Ambulatory site (reference hospitalized site) 0.2

Black or Hispanic race/ethnicity (reference white
or Asian)

1.5

Non-English language preference (reference
English language)

1.7

Dvasc 0.3
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This is relevant not only for the rare John Doe patient
but also in cases of demographic information missing from
the chart by error, patient inability to provide a history, or
inability to obtain data from prior institutions. Imaging
biomarkers extracted from CXRs offer unique opportunities
to identify undocumented, underdiagnosed, or undiagnosed
illnesses in high-risk patients because they are relatively
common and inexpensive tests, frequently performed either
around or at admission [20,21]. Moreover, imaging
biomarkers can alert the medical staff of underlying medical
conditions not previously diagnosed, which helps clinicians
take a comprehensive approach to conditions not previously
known by regular methods (chart review, history taking,
etc). CXRs are almost always obtained on presentation
consistent with COVID-19 in the emergency department
or immediate care clinics. In addition, such imaging bio-
markers may unmask health disparities not readily apparent
from other data sources. Our DL model allowed us to make a
prediction regarding the probability of thoracic vascular dis-
ease as a comorbidity and was correlated with administrative
EHR diagnoses. HCC codes are also predictive of repeat
admission [22].
ical condition category codes for the combined cohort of
gression

Ratio 95% Confidence Interval P

59 1.049-1.069 <.001

15 0.149-0.312 <.001

76 1.124-2.210 .008

38 1.169-2.584 .006

36 0.209-0.538 <.001
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Our study was limited by several factors. First, we did
not perform a manual chart review on our cohorts to assess
for additional clinical documentation of associated comor-
bidities, such as vascular disease. Absent or missing di-
agnoses may have been lost upon transfer from one health
system to another, omitted by provider error, or contained
within unstructured EHR data, like clinical notes. Although
a limitation, this is one of the factors we reviewed by looking
at the difference between DL-estimated disease and
administrative data. Last, the implementation of DL models
remains a technical challenge for many institutions and
practices, with relatively few data collection standards or
standards of algorithmic development and a lack of wide-
spread adoption. Although we showed the predictive power
of the DL classifier when using the hospitalized portable
CXRs, the CNN was not trained on portable films.

In conclusion, DL techniques have a well-deserved
reputation for propagating biases in medicine. Still, here
we show how they can help mitigate these biases, in
particular detecting thoracic vascular disease that may be a
biomarker for at-risk patients with poor SDI scores, of non-
White ethnicity, or with a non-English language preference.
Clearly, a multitude of barriers can exist. Critically, this
approach performs independently of any additional clinical
data, permitting use when patient history and examination
information are unknown or difficult to obtain.
TAKE-HOME POINTS

n A DL CXR classifier was predictive of thoracic
atherosclerotic vascular disease in patients with
COVID-19 compared with the presence of the
administrative code for vascular disease in EHRs.

n The discrepancy between the classifier predictions and
coded vascular disease demonstrated significant associa-
tions with race/ethnicity, SDI, and language preference.
These discrepancies were associated with an at-risk cohort
with higher mean SDI but not a more affluent cohort
with lower mean SDI. This may mean that social depri-
vation must surpass a threshold before it has an impact.
Furthermore, absence of coded vascular disease, even
when controlling for age, sex, site, race/ethnicity, and
language, was itself suggested as a potential marker for
underdiagnosis or underdocumentation.
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